Fenomen Boreliozy. Część 1.

Dlaczego udaje tak wiele innych chorób? I czemu tak trudno ją wykryć?
Przyczyny leżą w mikrobiologii bakterii powodującej boreliozę. W niniejszym artykule przedstawiona została biologia tej bakterii i skutki wyjątkowej mikrobiologii tego organizmu w ludzkich ofiarach.

 

Boreliozę wywołuje bakteria o spiralnym kształcie, znana jako krętek. Choroby wywoływane przez krętki z natury są zazwyczaj nawracające, trudne do wykrycia i świetnie imitują inne schorzenia. Syfilis, gorączka powrotna (dur powrotny), czy leptospiroza stanowią inne przykłady chorób krętkowych. Borelioza, zwana też chorobą z Lyme, wywoływana jest przez bakterię Borrelia burgdorferi, nazwanej od nazwiska doktora Willy’ego Burgdorfera, który w 1981 wyodrębnił ją z kleszcza jelenia. Niniejszy artykuł stara się wyjaśnić tajemnice tej bakterii i dlaczego powoduje ona takie wiele kontrowersji między pacjentami a środowiskiem medycznym.

Budowa bakterii boreliozy

Budowa krętka boreliozy nie przypomina żadnych innych dotychczas zbadanych bakterii. Jest jednym z największych krętków (0,25 x 50 mikronów). Jego długość odpowiada grubości zdrowego włosa ludzkiego. Borrelia burgdorferi jest też wyjątkowo ruchliwa, dzięki własnemu napędowi wyjątkowo dobrze porusza się zarówno we krwi, jak i w tkankach. Napęd stanowi zespół wewnętrznych sprzężonych ze sobą wici, biegnących przez całą długość bakterii, od końca do końca.

BORRELIA BURGDORFERI BACTERIA

Tak, jak inne bakterie z rodzaju Borrelia, Borrelia burgdorferi również ma potrójną ściankę komórkową, która pozwala jej na utrzymanie spiralnego kształtu. Różni się od innych gatunków tym, że ma na powierzchni żelatynową osłonkę z proteoglikanów, która otacza całą bakterię. Ta dodatkowa osłonka nazywana jest też śluzową lub osłonką S. Znaczenie: Dodatkowa warstwa glikoprotein działa niczym zbroja chroniąca i skrywająca bakterie przed układem odpornościowym. Układ immunologiczny człowieka wykorzystuje białka na powierzchni bakterii, jako markerów i wysyła atakujące przeciwciała i tzw. komórki-zabójców do owych markerów, nazywanych białkowymi antygenami powierzchni zewnętrznej (antygeny OSP). Ta prawie niewidoczna warstwa rzadko pojawia się w zmytych hodowlach komórkowych, jednak z reguły występuje w wycinkach biopsji tkanek.

Bakteria boreliozy różni się od innych także układem DNA. Większość bakterii ma wyraźne chromosomy pływające w cytoplazmie. Kiedy bakteria zaczyna się dzielić, najpierw na środku wytwarza nową ścianę komórkową, a potem rozpoczyna podział: nowe chromosomy powielają się, tworząc nową komórkę. Jednak materiał genetyczny w Borrelia burgdorferi rozmieszczony jest zupełnie inaczej: jest ułożony wzdłuż wewnętrznej ściany błony komórkowej. Przypomina więc siatkę podklejoną tuż pod skórą bakterii.
To znaczy, że nauka nie ma jeszcze pojęcia, w jaki sposób Borrelia zarządza swoim materiałem genetycznym w trakcie podziału. DNA bakterii jest jednorodnie wklejone wewnątrz błony wewnętrznej niczym nylonowa pończocha. Inną cechą charakterystyczną Borrelii są pęcherzyki. Bakteria ta powiela specjalne geny i umieszcza je w ścianie komórkowej, następnie ten odcinek ściany ulega egzocytozie i zostaje wysłany w głąb ludzkiego organizmu. Nie wiadomo, dlaczego się tak dzieje, ale wiadomo, że pęcherzyki te bardzo drażnią układ odpornościowy.
Dr Claude Garon z Laboratorium Rocky Mountain wykazał istnienie bardzo precyzyjnego mechanizmu, który reguluje proporcje różych typów pęcherzyków, rozsiewanych przez bakterię. U innych bakterii fakt pojawienie się pęcherzyków często oznacza, że może się ona dzielić swoim materiałem genetycznym z innymi. Nie wiadomo, czy jest tak w rodzaju Borrelia. Istnieją badania opisujące ziarnistą formę Borrelii, która rozrasta się do dorosłej formy krętka i dalej może się już normalnie rozmnażać przez podział. Formy granulowate są tak małe, że dopiero za pomocą mikrofiltrów można je oddzielić od postaci dorosłych. Badania tej formy przetrwalnikowej nadal trwają.
Podział Borrelia burgdorferi jest bardzo powolny. Inne patogeny, takie jak gronkowce, czy paciorkowce, do podwojenia się potrzebują zaledwie 20 minut, podczas gdy Bb potrzebuje na to aż 12-24 godzin. Ponieważ wiele antybiotyków działa przez uszkadzanie ściany komórkowej, mogą one niszczyć bakterie tylko wtedy, gdy te zaczynają się dzielić i tworzą nową ścianę komórkową.

To znaczy, że skoro antybiotyki mogą tylko zabijać bakterie, które się dzielą, to powolny podział chroni bakterie przed antybiotykiem. Większość bakterii udaje się zniszczyć podczas kuracji trwającej 10-14 dni. Chcąc uzyskać ten sam efekt działania antybiotyku na szczególnie wrażliwy moment podziału krętka boreliozy, antybiotyk musi być obecny codziennie na okrągło przez półtora roku! Gronkowcowe krętki boreliozy*
Uwaga: Antybiotyki zabijają bakterie, łącząc się z organellami bogatymi w RNA, czyli rybosomami: zatrzymują tworzenie białek niezbędnych do budowy ściany komórkowej i do metabolizmu komórek. Niektóre nowsze antybiotyki ingerują w syntezę DNA/RNA (np. Ciuro i inne chinoliny ingerują w gyrazę3 – enzym, który rozplata łańcuch DNA przed podziałem).Kiedy bakteria znajduje się między podziałami (w stanie uśpienia), żaden antybiotyk na nią nie zadziała.
Dopiero gdy antybiotyk zostanie wchłonięty i wejdzie do procesu metabolicznego bakterii, spowoduje zatrzymanie tego procesu i jej zniszczenie.
W przeciwieństwie do antyseptyków, antybiotyki nie zabijają przez kontakt. Jeżeli bakterie zamaskują się w fazie uśpienia, to antybiotyki nie będą na nie działać bez względu na długość leczenia – dopóki bakteria nie będzie metabolicznie aktywna. Rybosomy tłumaczą mRNA4 na białko, czyli geny komórkowe stanowią białka tworzone w rybosomach. RNA to białka działające taśmowo. Podobnie jak inne krętki, np. krętek blady powodujący kiłę, również krętek boreliozy może latami pozostawać w organizmie w stadium uśpienia. Wiemy o tym, ponieważ pacjenci z zapaleniem zanikowym skóry obwodowych części kończyn (ACA5) często mają dodatnie posiewy komórkowe z biopsji i hodowli wycinka skóry. Taka bateria pozostaje w stanie uśpienia. Nie przetwarza materii, nie absorbuje antybiotyków, więc nie mogą jej one szkodzić. Kiedy warunki się ulegną poprawie, bakterie, które przeżyły, mogą ponownie zasiedlić krwiobieg i rozpoczynają nawrót choroby. Jest to więc doskonały sposób na przetrwanie w organizmie pacjenta.

To znaczy, że jeśli ktoś nie ma objawów od dawna, wcale nie oznacza, że jest wolny od infekcji. Zwykle jest to tylko kwestia czasu, kiedy pojawi się nawrót wywołany przez uśpione bakterie. Podczas gdy infekcje wirusowe wytwarzają wieloletnią odporność i mogą tłumić późniejsze nawroty choroby, to borelioza takiej odporności nie – tworzy, często infekując ponownie. Nawrót symptomów może być zauważony jako ponowna infekcja lub rozsiew infekcji z miejsc ukrytych przed ochroną układu immunologicznego.
POLIMORFIZM jest to zdolność bakterii do zmiany tożsamości strukturalnej. Podczas podziału bakteria ma możliwość zmiany struktury ściany komórkowej i antygenów powierzchniowych, utrudniając rozpoznanie przez system odpornościowy. Podobnie jak robi to jej bliski kuzyn, odpowiedzialny za GORĄCZKĘ POWROTNĄ.

KRĘTKI

Krętek boreliozy ma cały ciąg antygenów powierzchniowych, z których może wybierać, które chce ujawnić. Dotychczas zidentyfikowano ponad dwadzieścia gatunków bakterii Borrelii gorączki powrotnej. Obecnie dostrzega się podobną różnorodność w rodzinie krętków boreliozy. Polimorfizm utrudnia rozpoznanie i identyfikację, tak jakby przestępca zakładał coraz inną maskę za każdym razem, gdy popełni przestępstwo. Jeżeli nawet istnieją 4 główne genotypy krętków boreliozy: Borrelia burgdorferi, afzellii, garinii i lonstarrii, trzeba podkreślić, że choćby w obrębie trzech pierwszych istnieją setki szczepów. Są one bardzo polimorficzne, ponieważ mają genetycznie wbudowany mechanizm zmiany antygenów.

To znaczy, że chociaż układ immunologiczny rozpoznaje bakterię i stara się ją zabić, to ona zmienia strój, oszukując system odpornościowy i żyje sobie dalej. Wkrótce bakteria znajduje bezpieczniejsze miejsca w organizmie, ukrywa się jeszcze lepiej i w końcu układ immunologiczny przestaje jej szukać. Innym aspektem polimorfizmu jest fakt, że zmiana komórkowa może okazać się groźna dla innych komórek. Na przykład, kiedy Borrelię burgdorferi wprowadzono do krwiobiegu myszy, od razu po- wędrowała do mózgu. Jednak bakteria, która potem opuszczała mózg, była lepiej przystosowana do życia w tkankach mózgowych i już nie była niszczona przez przeciwciała krwi. Polimorfizm stanowi bardzo sprytną sztuczkę przetrwania, tłumacząc powody licznych objawów.

Krętki bez ścian komórkowych

Zgrabny spiralny kształt Borrelii tworzony jest dzięki obecności ściany komórkowej. Bez ściany określającej kształt bakteria ma tylko cienką elastyczną błonę, która utrzymuje resztę struktury. Kiedy bakteria wyłącza geny tworzące ścianę komórkową, wtedy zmienia kształt ze spirali w kulę. Takie kuliste formy znane są jako formy L lub formy bez ściany komórkowej [CWD]. Stanowią one nowe niebezpieczeństwo w diagnozie i leczeniu.
Wielu lekarzom i mikrobiologom trudno jest uwierzyć, że krętki mogą w rzeczywistości przyjmować pęcherzykowaty kształt kuli, a tak bywa. Część mechanizmu obronnego krętków boreliozy, walczącego z układem immunologicznym ssaków, wykształciła umiejętność wyłączania grup genów odpowiedzialnych za tworzenie ściany komórkowej. Tak eliminują antygeny związane ze ścianą komórkową.

W jaki sposób mikrobiolog rozpoznaje Borrelię burgdorferi, jeżeli nie jest już ona spiralą? Trudno wykazać, że owe kule pływające w ludzkiej krwi w rzeczywistości są krętkami, ponieważ źle rosną w kulturach komórkowych in vitro. Dlatego mikrobiolog przygotowuje na szkiełku mikroskopowym kroplę zakażonej krwi i potem dodaje pomarańczowy barwnik wyróżniający kwasy nukleinowe. Zaraz potem przeprowadza typowe barwienie antygenów Borrelii z monoklonalnym przeciwciałem połączonym z barwnikiem fluorescencyjnym. Ten barwnik wyróźnia tylko bakterie z gatunku Borrelia. Nagle to, co wydawało się zupełnie niewidoczne przy zwykłych technikach barwienia, staje się widoczne. Tak można udowodnić, że krętki naprawdę potrafią przeistoczyć się w kule bez ściany komórkowej.
Inną metodą wykrywania Borrelii jest użycie przeciwciał specyficznych dla Borrelii i oznaczanie ich nieaktywnymi drobinkami złota. Potem hoduje się formy L z antyciałami znakowanymi złotem. Pod mikroskopem elektronowym wyraźnie widoczne są przeciwciała przylegające do białek Borrelii. Z tego więc wynika, że forma L musiała przedtem być krętkiem.
Najbardziej przekonujący dowód na to, że krętki ze swej klasycznej formy mogą przekształcać się w formę L, a potem ponownie wrócić do formy krętka, uzyskuje się w mikroskopowej hodowli na mokrych pożywkach. Można tam zaobserwować, jak forma L przyjmuje klasyczną formę krętka, widać wręcz krętka wypychanego przez błonę komórkową na zewnątrz formy L. Bakteria ta może przeobrażać się z krętka w formę L i z powrotem nawet bez typowego połowicznego podziału komórki. Połowiczne rozszczepienie zaczyna się, gdy komórka dzieli na pół ścianę komórkową, tworząc identyczną komórkę potomną (klon). Jednak podczas rozmnażania form L nie zawsze powstają identyczne klony.

To znaczy, że antybiotyki hamujące rozwój ścian komórkowych, takie jak rocephin i amoxycylina są nieskuteczne. Oznacza to również, że większość antybiotyków nie poradzi sobie ze zwalczaniem boreliozy, gdy trafi na formy L. Inne antybiotyki, takie jak doksycyklina i cliritromycyna, będące czynnikami hamującymi proteiny, mogą okazać się bardziej skuteczne pod względem działania na ścianę komórkową.
Klasyczna forma ze ścianą komórkową (przeciwciała B. burgdorferi znaczone złotem)

W jakiej formie bakteria boreliozy występuje w ciele człowieka?

Pionierskie badania nad krętkiem w formie L dokonano na tkankach pacjentów z kiłą trzeciego stopnia. Wycięto zaatakowaną kiłą aortę i przeprowadzono analizę obecności formy L. Jak się okazało, klasyczna forma krętka dominowała głównie w świetle tętnicy i krwi. Natomiast dalej od śródbłonka przez naczynia ku środkowi błony podstawnej napotkano rosnącą ilość form morfogenicznych. Krętek powoli przechodził transformację z formy spiralnej w kulkę.

To znaczy, że forma, jaką wybierze bakteria, w dużej mierze zależy od otaczających ją warunków fizycznych. W jednych tkankach woli przybierać formę klasyczną, podczas gdy w innych – formę bez ściany komórkowej. Taki dymorfizm od dawna przyjęto dla infekcji drożdżycowych i grzybiczych (Candida). Podobna koncepcja ostatnio przyjmowana jest również dla gatunku Borrelia (drożdżaki również mogą przyjmować odrębną formę strzępki, która może się zmienić w formę produkującą zarodniki).

Ruchliwość

W jaki sposób krętek przemieszcza się z krwiobiegu do innych tkanek? Od dawna wiadomo, że krętek może pojawiać się w mózgu, oczach, stawach, skórze, śledzionie, wątrobie, układzie pokarmowym, pęcherzu moczowym i w innych narządach. Ciągle jednak nie rozumiemy mechanizmu, za pomocą którego może on przenikać przez naczynia włoskowate i błony komórkowe [Abstrakt 644]. W 1996 roku na Międzynarodowej Konferencji na Temat Boreliozy dr Mark Klempner przedstawił ciekawy referat dający częściowo odpowiedź na to pytanie.
Wielu badaczy zauważyło, że krętek boreliozy atakuje ludzkie komórki jakby od końca. Dr Klempner wykazał, że gdy krętek atakuje komórkę żywiciela, powoduje, iż komórka wydziela enzymy lityczne, które rozłożą komórkę, aby krętek mógł wejść, gdzie chce. Posługuje się naszymi enzymami przeciwko nam, co jest bardzo ekonomiczne – dzięki temu nie musi podróżować z bagażem genów i enzymów. Dr Klempner wykazał również, że krętek może wnikać do takich komórek jak ludzki fibroblast (komórki budujące blizny) i tam się skryć. Patogen w takim miejscu był zabezpieczony przed układem immunologicznym i żył sobie bezproblemowo. Co ważniejsze, kiedy zakażone boreliozą fibroblasty inkubowano z ceftriaxonem, aż ⅔ z nich nadal produkowało żywe krętki po dwóch tygodniach, a w dalszych eksperymentach nawet po ponad 30 dniach.
Jeżeli nawet w probóce nie potrafimy ich zniszczyć przez 4 tygodnie bardzo stężonym ceftriaxonem, to jak można się spodziewać, że uda się je zniszczyć w organizmie człowieka? [22, 48, 79, 80].

To znaczy, że infekcja wybiera sobie tkankę, w której znajdzie optymalne miejsce do przetrwania. Kiedy zaś wytworzy już przyczółki wewnątrzkomórkowe, potrafi unikać układu odpornościowego i antybiotyków, trwając z dala od wrogiego otoczenia. Ciekawe jest też, jak ta bakteria wpływa na nasz układ immunologiczny. Dr David Dorward z Laboratorium Rocky Mountain nakręcił film wideo o tym, jak Borrelia burgdorferi zachowuje się otaczana przez komórki B (białe krwinki wytwarzające przeciwciała) Krętek najpierw zaczepił o koniec komórki B, wszedł w nią, podzielił się i rozerwał komórkę. Proces powtarzał się przez 3 dni, dopóki krętki zrównoważyły komórki B. Niepokojące było to, że niektóre krętki potrafiły zerwać błonę komórkową komórki B i nosić ja niczym okrycie. [Dorward, Hulinska 1994 LDF Konferencja w Vancouver BC].

To znaczy, że jeżeli krętki mogą atakować limfocyt B to mogą też pewnie wiele innych rzeczy, których nie potrafimy jeszcze zrozumieć. Nie ma wątpliwości, że zdolność niszczenia limfocytów B wytworzyła się ewolucyjnie dla ochrony samej bakterii. A fakt, że potrafi wykorzystać błonę komórek B jako kamuflaz, wskazuje, może być nie wykrywalna przez nasz układ immunologiczny.

Receptory

Okazuje się, że na powierzchni krętka występują specjalne receptory, którymi przyczepia się on do śródbłonka, N-Acetylo-glukazaminy (chrząstki), komórek B, komórek glejowych, neuronów i włókien nerwowych. Nasz układ immunologiczny funkcjonuje w ten sposób, że najpierw rozpoznaje intruza, a później go atakuje. Niestety, czasami atakuje własne komórki. Określa się to chorobą autoimmunologiczną. Jeżeli intruz ma strukturę chemiczną podobną do naszych antygenów, nasze ciało może wytworzyć przeciwciała przeciw własnym tkankom. U osób z boreliozą naukowcy [23, 28, 38-40, 43, 45, 56, 57, 60, 88] wykryli takie auto przeciwciała przeciwko własnym tkankom takim jak:
– neurony (neuryty),
– kardiolipidy,
– mielinowe osłonki neuronów (jak w SM),
– podstawowe białko mieliny (jak w SM),
– neurony mózgowe.
Kiedy układ immunologiczny natrafia na obcy organizm, oznacza go na kilka sposobów. Komórkazwana makrofagiem wchłania bakterię i przekazuje innym dokładny opis napastnika. Inna zaś komórka może tak oznaczyć intruza, by rozpoznawały ją komórki-zabójcy. Niektóre typy komórek- zabójców komunikują się z innymi, przekazując ważne informacje obronne. Niestety jednak, niekiedy wytwarzają przeciwciała, które nie atakują i w niczym organizmowi nie pomagają. Blokujące przeciwciało doczepia się do napastnika, przykrywa go, nie dochodzi jednak do wiązania komplementów, w efekcie więc chroni ono intruza przed późniejszym rozpoznaniem przez układ odpornościowy. W boreliozie spotyka się wiele blokujących przeciwciał IgG4, podobnie jak to obserwowano w infekcjach pasożytami [Tom Schwann RML 92, Konferencja LDF]. Układ immunologiczny wytwarza atakujące przeciwciało dopiero wtedy, gdy znajdzie antygen – obiekt ataku. Niestety, fotografie bakterii boreliozy robione z mrożonych prążek mikroskopem elektronowym wykazują, że większość antygenów znajduje się w błonie wewnętrznej, nie na zewnątrz [60]. To sprawia, że bakteria jest mało widoczna dla układu odpornościowego i trudniej ją zaatakować. W krętkach Borrelii intrygująca jest dobrze udokumentowana umiejętność zmiany kształtu na powierzchni antygenów atakowanych przez układ odpornościowy człowieka. Dlatego często układ immunologiczny spędza kolejne tygodnie na wytwarzanie nowych przeciwciał, podczas gdy w tym samym czasie infekcja trwa nadal, bakteria dzieli się i ukrywa [1, 47, 63, 66].
Wydaje się, że Borrelia potrafi zmieniać antygeny powierzchniowe wielokrotnie i szybko. W trakcie jednego badania doktor Andrew Pachner [60, 88] zakaził myszy pojedynczą odmianą Borrelia burgdorferi. Po kilku tygodniach z zakażonych myszy wyizolował dwie róźne odmiany bakterii. Bakterie z krwiobiegu były niszczone przez układ immunologiczny myszy, ale te z mózgu były odporne na surowicę z przeciwciałami. Bakterie wyizolowane z mózgu miały więc na powierzchni inny zespół antygenów. Wydaje się, że tę zmianę spowodował kontakt z układem nerwowym. Ponieważ mózg jest wyizolowany z układu immunologicznego i posiada własne sposoby ochrony immunologicznej, bakteria przekształciła się w inną odmianę. [47, 97].

To znaczy, że infekcja krwiobiegu może się różnić od infekcji wyizolowanej z mózgu. Jeżeli nawet krwiobieg nadal tworzy aktywną ochronę, to mózg ma niewiele do obrony poza puszczaniem przeciwciał w obieg. Jeżeli więc krążące przeciwciała okazują się nieskuteczne w walce z bakteriami w mózgu, to mózg staje się bezbronny, a infekcja rozwija się swobodnie i bez ograniczeń.
Inną ciekawą sprawę zaobserwowano w środku tej bakterii. Kiedy genetyczne mechanizmy kontrolne są blokowane przez antybiotyk zwany gyrazą DNA (ciprofloxacyna), bakteria nagle zaczyna wytwarzać bakteriofagi – wirusy specjalizujące się w atakowaniu bakterii. W tym przypadku występują dwa różne typy takich wirusów. Oznacza to, że Borrelia kiedyś została zaatakowana przez te wirusy i jakoś była w stanie stłumić ich aktywność, ciągle jednak nosi w sobie wbudowane we własne DNA kopie intruzów. Może kiedyś cenną bronią w walce z boreliozą okaże się aktywacja owych fag? [JTBD 94].

Co się stanie, kiedy zakażenie dotrze do mózgu? W przypadku boreliozy wszystkie dotychczasowe zwierzęce modele choroby wykazują, że krętek w ciągu zaledwie kilku dni przedostaje się z miejsca ukąszenia do mózgu. [41, 60, abstrakt 644].
Wiemy już, że bakteria może przebić pojedyncze ściany komórkowe i kapilary, a bariera krew-mózg wydaje się trudniejsza do przekroczenia. Kiedy bakteria boreliozy wkracza do ludzkiego organizmu, ten reaguje wytworzeniem szeregu substancji zwanych immunomodulatorami: cytokininy7 i limfokiny8. Wiele z nich bierze udział w niszczeniu bariery krwi [np.: Il-6, Tumor Necrosis Factoralpha, Il-1, Transforming \ Growth Factor-beta i inne]. Ponadto to właśnie cytokininy sprawiają, że czujemy się źle i mamy gorączkę. [54, 60, JID 1996: 173, Jan].
Ponieważ mózg nie ma układu immunologicznego, przede wszystkim broni się przed zarażeniem, ograniczając do siebie dostęp. Siateczka naczyń włosowatych otaczająca mózg jest tak szczelna, że nawet białe ciałka krwi nie mogą się przez nią przecisnąć. Nie przechodzi tędy również wiele leków, dlatego leczenie chorób mózgu jest szczególnie trudne. W pierwszych dziesięciu dniach od zakażenia boreliozą bariera krew-mózg praktycznie nie istnieje. To nie tylko umożliwia krętkom przeniknięcie do mózgu, ale także mogą tam przejść białe ciałka krwi, które mogą wywołać zapalenie mózgu. [41].

*Uwaga: załamanie się bariery krew-mózg zostało wykazane za pomocą oznakowania radioaktywnym jodem białych ciałek krwi, albumin i innych substancji, o których wiadomo, że nie przekraczają tej bariery. Zbadano płyn mózgowo-rdzeniowy, a później zainfekowano zwierzęta krętkiem. Następnie płyn testowano codziennie przez wiele tygodni. Jakie były rezultaty? W grupie kontrolnej jod nie przekroczył bariery, a wśród 100% zainfekowanych zwierząt przekroczenie tej bariery trwało 10 dni. Wyglądało to prawie tak, jakby przez owe 10 dni ktoś wstrzykiwał im jod bezpośrednio do mózgu. [60] Jeżeli u człowieka następuje zapalenie mózgu, wówczas komórki zwane makrofagami reagują wydzielaniem neurotoksyny: kwasu chinolinowego. Także w chorobie Parkinsona, SM i ALS występuje podwyższony stan tej toksyny. Jest ona także odpowiedzialna za demencję pacjentów z AIDS. Kwas chinolinowy silnie stymuluje neurony, które wielokrotnie się depolaryzują, co później doprowadza do utraty osłonki mielinowej i ich obumierania. Nadmiar tej toksyny u ludzi powoduje kłopoty z pamięcią krótkotrwałą. [27, 29-37, 40-42, 74, 75, 82-84, 87-90].

To znaczy, że jeżeli pomyślimy o komórkach mózgowych, jak o linii telefonicznej, łatwiej będzie zrozumieć problem: kiedy wszystkie linie przychodzące są cały czas zajęte, nie możemy się niczego dowiedzieć, a kiedy wszystkie linie wychodzące są zajęte, to nie możemy niczego wywołać z pamięci. Myślenie staje się nieudolne. Innym powodem niewydolności staje się ograniczenie przepływu krwi przez naczynia w obrębie mózgu. Za pomocą komputerowego skanera tomograficznego emitującego pojedyncze fotony (SPECT), można przedstawić trójwymiarowo przepływ krwi przez mózg. W mózgach pacjentów z przewlekłą boreliozą przepływ ten przypomina ser szwajcarski. Region korowy, odpowiedzialny za myślenie, traci dobre unaczynienie, natomiast region potyliczny, odpowiedzialny za widzenie, otrzymuje zwiększony przepływ krwi [97]. To może wyjaśniać, dlaczego większość pacjentów z boreliozą uskarża się na kłopoty z koncentracją i na nadwrażliwość oczu. [91]

Ciąg dalszy wkrótce.

Do opracowania tekstu korzystamy z materiałów ogólnodostępnych w mediach internetowych, dobierając je dla Was według naszej najlepszej wiedzy.

Żródło tekstu: www.ebiocare.pl